
Scheduling Cyclic Task Graphs with SCC-Map
Alexandre Sardinha∗, Tiago A. O. Alves∗, Leandro A. J. Marzulo†,
Felipe M. G. França∗, Valmir C. Barbosa∗ and Vı́tor Santos Costa‡

∗Universidade Federal do Rio de Janeiro
Programa de Engenharia de Sistemas e Computação, COPPE, Rio de Janeiro, RJ, Brasil

Email:{sardinha, tiagoaoa, felipe, valmir}@cos.ufrj.br
†Universidade do Estado do Rio de Janeiro

Instituto de Matemática e Estatı́stica, Departamento de Informática e Ciência da Computação, Rio de Janeiro, RJ, Brasil
Email: leandro@ime.uerj.br

‡Universidade do Porto
Departamento de Ciência de Computadores, Porto, Portugal

Email: vsc@dcc.fc.up.pt

Abstract—The Dataflow execution model has been shown to
be a good way of exploiting Thread-Level Parallelism (TLP),
making parallel programming easier. In this model, tasks must
be mapped to processing elements (PEs) considering the trade-
off between communication and parallelism. Previous work on
scheduling dependency graphs have mostly focused on directed
acyclic graphs, which are not suitable for dataflow (loops in
the code become cycles in the graph). Thus, we present the
SCC-Map: a novel static mapping algorithm that considers the
importance of cycles during the mapping process. To validate
our approach, we ran a set of benchmarks using our dataflow
simulator varying the communication latency, the number of PEs
in the system and the placement algorithm. Our results show that
the benchmark programs run significantly faster when mapped
with SCC-Map. Moreover, we observed that SCC-Map is more
effective than the other mapping algorithms when communication
latency is higher.

I. INTRODUCTION
Recent work has pointed at the Dataflow execution model as

a good alternative to exploit thread-level parallelism [1]–[3].
In the Dataflow model, programs can be described as a graph,
where nodes represents Instructions (or tasks) and edges in
the graph describe their dependencies. Execution is guided by
the dataflow firing rule: instructions are fired as soon as all of
their input operands are ready (i.e., all of their parents have
completed).
A problem that arises from this strategy is the need to

map instructions to processing elements (PEs). Once you have
described the program dependencies in a dataflow graph, you
must decide where each instruction will be placed (i.e., which
available PE will execute which instruction). A good mapping
must balance the fact that the more instructions are spread
among PEs, the more parallelism will be available, but also the
more communication overhead one will have. Therefore, an
ideal scheduling strategy must aim at obtaining a good trade-
off between communication and parallelism. Throughout this
work, we use the terms “map” and “schedule” interchangeably.
Previous work on scheduling dependency graphs have

mostly focused on DAGs (directed acyclic graphs), with good
results being achieved for statical (or offline) mapping [4]–
[8]. However, mapping algorithms for DAGs are not suitable

for dataflow graphs, since dataflow programs often contain
cycles corresponding to the loops in the code. We present the
SCC-Map: a new static mapping algorithm for dependency
graphs that contain cycles (namely, for dataflow graphs). Our
proposal is based on the work of Boyer and Hura [6], which
was aimed at DAGs. We further compare our novel approach
towards dataflow graphs with other algorithms, such as the
ones presented in [6], [7].

In order to validate our ideas, we developed a cycle-by-
cycle dataflow simulator, allowing us to investigate in detail
the effects of each mapping strategy. Then, we compiled a set
of benchmarks to run on the simulator varying the placement
algorithm, communication latency, and the number of available
processing elements in the system. Mappings were obtained
by a set of reference algorithms and SCC-Map. We compared
the speedups in all scenarios, taking as baseline the serial
execution, i.e., the case where all instructions mapped to
the same PE. Moreover we provide a theoretical maximum
speedup that could be achieved for each application. This value
was obtained by placing each instruction of the program in a
distinct PE and setting the communication latency to 1 clock
cycle (minimum possible latency).

Our results show that, for most of the tested scenarios, our
set of programs run significantly faster with the instruction-
to-PE mappings obtained with our algorithm. Moreover, we
observed that SCC-Map is more effective than the other
mapping algorithms when communication latency is higher
in the system.

The rest of this paper is organized as follows: Section II
discusses the relevance of the mapping problem in the context
of dataflow systems and presents TALM (the dataflow model
used as basis to build the simulator to test SCC-Map); in
Section III we discuss some related works; Section IV presents
SCC-Map (our mapping algorithm); results are presented and
discussed in Section V; we conclude and indicate possible
future works in Section VI.

2012 Third Workshop on Applications for Multi-Core Architecture

978-0-7695-4916-3/12 $26.00 © 2012 IEEE

DOI 10.1109/WAMCA.2012.8

54

II. THE DATAFLOW TASK SCHEDULING PROBLEM

Many algorithms have been proposed for static scheduling
of tasks (or instructions) onto processing elements (PEs),
such as [4]–[7]. Those solutions have considered only DAGs
(directed acyclic graphs), or just ignored the existence and
influence of cycles. The focus of this work is the mapping
of tasks in a dataflow program. In this case, loops in the
program are translated into cycles in the related dataflow
graph. Therefore, the influence of cycles is a determinant
factor in program execution.
TALM (TALM is an Architecture and Language for Mul-

tithreading) is a model designed to use dataflow principles
of execution to exploit thread-level parallelism in Von Neu-
mann machines, using traditional imperative languages [1],
[2]. This is achieved by allowing the definition of coarse-
grained instructions, or super-instructions, as an extension of
the standard dataflow instruction set. These super-instructions
are connected in a dataflow graph, which may also contain
simple fine-grained instructions, and the dataflow firing rule is
used to naturally paralellize program execution. The dataflow
firing rule is the basic concept behind dataflow architectures
and goes as follows: an instruction may be fired (dispatched
for execution) as soon as all its input operands are ready.
Thus, if two instructions have no precedence relation between
them they may execute concurrently, if they are not mapped
to the same PE. Similarly to other dataflow models, in TALM
loops are represented as cycles in the dataflow graph and the
iterations are controlled by special instructions, namely the
steer and the inctag instructions [1], [2].
TALM has been implemented as a runtime system for

multicore machines: the Trebuchet [1], [2]. Moreover, the
Couillard Compiler [1] has been developed to transform
annotated C programs into TALM’s dataflow graph. Since
Trebuchet’s processing elements are implemented as threads
in the host machine, instructions mapped to different PEs
will run concurrently, in different threads. Thus, we can
say that Trebuchet has the ability to convert instruction-level
parallelism, into thread-level parallelism.
In order to observe the effects of different mappings and

to evaluate SCC-Map, we developed an architectural dataflow
simulator based on the TALM execution model. The architec-
ture of the simulator consists of a set of processing elements
(PEs) connected by an interconnection network. For simplicity,
and since hierarchical architectures are not the main focus
of this current work, the simulated network topology is a
complete graph. We thus assume that the communication
latency between all pairs of PEs is the same. Each processing
element is comprised by an Input Buffer, an Instruction List,
a Matching Table, a Ready Queue and an Execution Unit.
The Input Buffer is a FIFO queue used to receive operands

from other PEs. The Instruction List is the in-memory program
of the PE and contains all instructions that were mapped to
the PE, along with information about the number of operands
each particular instruction must receive to execute and the
set of instructions that will receive operands produced by the

instruction. The Matching Table is a store where the operands
retrieved from the Input Buffer are placed. Operands that are
designated to the same instruction and have the same iteration
tag are stored together. Once the number of stored operands
with the same destination instruction and iteration tag is equal
to the number of necessary operands for that destination
instruction, the instruction is dispatched to execution along
with the operands. The Ready Queue is a queue that stores
the instructions whose input operands of the same iteration
have all been received (in the Matching Table). Each cycle, if
the Ready Queue is not empty, the PE retrieves one instruction
from the queue and dispatches it to the Execution Unit, where
ready instructions are actually executed.
The simulator receives as input a file containing the follow-

ing: (i)the dataflow graph to be executed, (ii) the instruction-to-
PE mapping configuration, (iii) architectural parameters such
as communication latency time (the number of cycles it takes
to send inter-PE operands) and (iv)the execution time (in
cycles) of each instruction of the instruction set.

III. RELATED WORK

Instruction mapping is a major problem in dataflow archi-
tectures. We will refer to recent work next. In [7], Mercaldi et
al. proposed eight different instruction mapping strategies for
the WaveScalar Architecture [9]. Since WaveScalar is a grid of
Processing Elements organized hierarchically, the focus of the
strategies in [7] is to take advantage of the communication
hierarchy of the grid. Since communication costs may vary
between PEs, these strategies aim at keeping instructions that
exchange data (i.e. dependent instructions) the closest possible
on the grid. In our model, the communication costs are equal
among all PEs, so this is not one of our main concerns, that
being the reason for us to diverge from this spatially oriented
approach.
In [5], an heuristic to enhance list scheduling was pre-

sented for interconnection-constrained architectures. The pri-
ority each attributed to each task during the scheduling re-
ceives a dynamic level, which is updated at each step of the
algorithm, depending on the tasks that were already mapped to
the processors. This way, the decision making of the algorithm
is refined, since it is not only based on characteristics of the
graph, but also on the current estimated state of the processing
and communication resources.
In [8] an approach that is similar to the dynamic-level

approach of [5] is presented. The algorithm is also based on
two phases of prioritizing: (i) static, based on characteristics
of the graph itself, and (ii) dynamic, depending on the state
of the resources at the moment of each iteration. However,
one key advantage of this work is that it tries to find slots to
allocate tasks between slots of instructions that have already
been scheduled. That is, if you have two tasks scheduled to
a processor and an idle time between them (typically because
the second one has to wait for data from its predecessors) the
algorithm will try to schedule a third task between them.
A model of computation that is closer to ours is the focus

of the algorithm proposed by Boyer in [6], which also takes

55

advantage of dynamic priorities. The main difference between
the problem addressed by Boyer and the dataflow instruction
mapping problem is that in [6] programs are only described
by DAGs (direct acyclic graphs) and in the dataflow model we
may encounter cycles in the graphs, which correspond to loops
in the program. Therefore, this approach is also not entirely
adequate for our target systems.

IV. SCC-MAP: SCHEDULING TASKS IN DATAFLOW
GRAPHS

As explained in the previous sections, algorithms such as the
one proposed in [6] do not directly apply to dataflow systems,
as dataflow graphs may have cycles. Therefore, we needed
to develop a way to deal with cycles if we were to adopt a
variation of such algorithms.

A. Strongly Connected Components
As a preliminary investigation of the properties of mappings,

we selected some graphs with up to 12 nodes (which yields
4.213.597 possible mappings) and ran all of the possible
mappings for each of these graphs on our simulator. The obser-
vation of the optimal mappings obtained in this investigation
suggested that the nodes in strongly connected components
(SCC) of the dataflow graph should be mapped to the same PE.
Intuitively, nodes in an SCC represent a set of instructions such
that each one has dependencies on all of the other instructions
of the set, so there is a limitation for the amount of parallelism
between them. Based on this heuristic we made the decision
to change the focus to mapping the SCCs of the graph to PEs,
instead of mapping each task individually. It follows from this
decision that the graph used as input for SCC-Map would

be

GSCC(I
′, E′) obtained from the original graph G(I, E) as

follows. First, we derive I ′ as the set of SCCs present in G and
E

′ as the set of edges between them such that (A,B) ∈ E′ if
{

A,B} ⊆ I ′ and ∃(i, j) ∈ E such that (i ∈ A ∧ j ∈ B). It is
important to notice that the decision to map SCCs instead of
mapping each instruction individually also solves the obstacle
we had for using DAG-targeted scheduling algorithms on
dataflow graphs, since GSCC has no cycles (i.e. is a DAG). In
the next sections we refer to specific SCCs by listing the set
of tasks that belong to it, e.g., {1, 2, 4} is a SCC comprised
by tasks 1, 2 and 4.

B. Task priority
In the algorithm proposed in [6], the next task to be mapped

to a PE is randomly chosen from the ready list (the list of tasks
whose predecessors have all been already mapped). In order
to obtain better mappings, the algorithm is executed multiple
times (according to a stop criteria) and the solution with the
minimum makespan is chosen. On the other hand, in [5], the
next task is chosen based on a priority level, defined as the
size of the longest path from the target task to another task that
is a leaf in the DAG. For efficiency reasons and in accordance
with our preliminary investigations, we chose to follow the
path of [5] and adopt priority heuristics for selecting the next
instruction to be mapped.

The simulations with small graphs described in IV-A hinted
three heuristics which we adopted as the tasks priorities (in
the order they are presented here): task level, task fan-out and
task fan-in. The task level is the size of the longest path from
the task to another task that is a leaf in the graph, the task
fan-out is the number of edges coming out of the task and the
task fan-in: the number of edges going into the task.

C. Custom SCC finish time
In order to estimate the earliest start time of a task in a

certain mapping it is necessary to obtain an estimation of the
maximum finish time between its predecessors, since a task
can only execute after receiving all of its input operands. If we
consider the entire execution time of the parent SCCs when
mapping a task, we may end up overestimating the time when
the target SCC may start executing. This effect can be observed
in the example of Fig. 1. Notice that, since we are going to map
the elements of an SCC to the same PE, the execution time of
each SCC is going to be the sum of the estimated execution
times of all tasks in the SCC. In the graph of Fig. 1, task 5
can start execution as soon as it receives the operand from
task 2, so, in this case, using the execution time of the entire
SCC {1, 2, 3, 4} to estimate the start time of 5 would be an
overestimation.
Consequently, in SCC-Map, when we calculate the start

time of an SCC that we want to map, the estimated execution
time of its predecessors must be customized. In other words,
the estimated execution time of an SCC A may have one value
when we are mapping an SCC B that depends on A and a
different value when we are mapping another SCC C that also
depends on A. We shall represent with TAB the estimated
execution time of an SCC A customized for mapping the
SCC B. TAB is defined as the maximum path between an
entrypoint in A and a task in B that receives an edge from
A, where an entrypoint is a task in the SCC that has an input
edge coming from another SCC. For instance, in the example
of Fig. 1, task 1 is the only entrypoint in {1, 2, 3, 4} and
T{1,2,3,4},{5,6,7} = 2, since distance(1, 5) = 2.

Fig. 1. Example of finish time overestimation.

D. Algorithm description
In this section we will describe the final form of our

algorithm, which, as mentioned, is a variation of the one
presented in [6] with the adaptations presented to make it suit-
able for dataflow graphs with cycles. The algorithm receives
as input the dataflow graph G(I, E), where I is the set of
tasks/instructions and E is the set of direct dependencies, the
set of processors P and the estimated execution time ti of each
instruction i. The first step in the algorithm is to obtain the

56

GSCC graph, isolating the SCCs of the input G graph. Next,
we calculate the priority levels of each SCC according to the
heuristics presented in IV-B. The final step of the algorithm’s
initialization is to populate the ready list with all the SCCs
that have no entrypoints and, therefore, can be executed from
start, without needing to receive input operands.

Input: Task Dependency GraphG(I, E), the set of processors
P and the estimated execution times ti of each task i

Output: A mapping of E → P

Calculate the priorities of all tasks in G

Create the graph of SCCs GSCC(I
′, E′)

Initialize ready list
while ready �= ∅ do
remove the SCC A with the highest priority from ready
MAP(A)
Add to ready the SCCs that have become ready after

this
end while
procedure MAP(A)

minmakespan←∞
for all PE p ∈ P do

SA ← max(SB + TBA + LBA)
FA ← max(SA,max(FZ (p))) + TA, where Z was

mapped to p

if FA < minmakespan then
minmakespan← FA

chosenproc← p

end if
end for
if minmakespan > makespan then

makespan← minmakespan

end if
map A to chosenproc

end procedure

Fig. 2. Algorithm for Scheduling Task Graphs with Cycles

The core of the algorithm consists of a loop that iterates
over the ready list removing from it the SCC with the highest
priority (following the criteria chosen in IV-B), maps it to
the PE that minimizes the resulting makespan and pushes
into the list the SCCs that have become ready (the ones
whose predecessors have all been mapped) in this iteration.
The resulting makespan if the SCC is mapped to a PE p is
calculated as follows: (i) define SA, the start time of the SCC
A, as the maximum value of SB + TBA+ LBA, where B is
a predecessor of A and LBA is the latency time between the
PE to which B is mapped and p (Lji = 0 if j was mapped to
p); (ii) if SA < max(FZ(p)), where FZ(p) is the finish time
of an SCC Z mapped to p, define FA := max(FZ(p)) + TA,
otherwise, make FA := SA + TA; (iii) if FA > makespan,
the resulting makespan will be FA

The PE chosen to map the SCC is the one that yields the
minimal resulting makespan. In Fig. 2 we present the complete
pseudo-code form of the algorithm.

V. EXPERIMENTS AND RESULTS

In this section we describe the methodology adopted to
validate our task mapping algorithm (SCC-Map) and compare
it with others.

A. Benchmarks
Since our focus are dependency graphs with cycles, namely

dataflow programs with loops, we developed a set of kernels
containing independent loops, nested loops and a combination
of both. In order to demonstrate that our algorithm would
not perform poorly with acyclic graphs, in comparison with
the algorithms designed for those types of graphs, we also
implemented kernels that had no loops. All kernels were
written in C language and compiled to dataflow graphs with
the Couillard C Compiler [1].
The proposed kernels are composed by smaller blocks

of codes with different characteristics. Acyclic blocks (A)
perform the calculation of a big mathematical expression
(which contains no loops) and would comprise the acyclic
portions of the benchmarks. Cycle blocks (C) are a loop that
calculates a summation. Nested cycle blocks (NC) comprise
two nested loops.
These blocks were connected in different ways to build our

benchmarks. Basic (B) means just one building block. Serial
connection (S) means we have four blocks of the same type
connected serially. In a Parallel connection (P) four blocks
of the same type placed in parallel with their results being
joined hierarchically, therefore their execution is independent.
A Serial/Parallel connection (SP) is a combination of the
Serial and Parallel categories, where two groups of blocks are
connected in parallel, and each group has two blocks serially
connected.

TABLE I
BENCHMARKS DETAILED INFORMATION

Bmark Inst. # SCC # max(SCC) avg(SCC) var(SCC)
A-B 135 135 1 1 0
A-P 540 540 1 1 0
A-S 537 537 1 1 0
A-SP 538 538 1 1 0
C-B 10 5 4 2 2
C-P 40 20 4 2 1.68
C-S 61 29 4 2.1 1.02
C-SP 46 22 4 2.09 1.41
NC-B 28 10 15 2.8 19.95
NC-P 112 40 15 2.8 18.42
NC-S 228 85 15 2.69 9.76
NC-SP 150 54 15 2.77 14.13
MIX 175 152 15 1.15 1.46

Each benchmark is named by concatenating its building
block type with its connection type (and the same is done with
its acronym), e.g., “Nested Cycle Basic” (NC-B). The “Mixed”
benchmark (MIX) is a combination of all building blocks,
using one of each. Table I shows more detailed information
about each benchmark, namely, the instruction count (Inst #),
the number of SCCs (SCC #), the number of instructions (or
size) of the biggest SCC (max(SCC)), the average SCC size

57

(avg(SCC)) and the variance of the SCCs sizes (var(SCC)).
Notice that the number of instructions is an upper-bound of
the number of PEs that can be used by a benchmark (each
instruction could be mapped to a different PE). Moreover, for
our algorithm, as the mapping unit is a SCC, the number of
PEs is limited by the number of SCCs.

Fig. 3. Results (Communication Latency=5 cycles).

Fig. 4. Results (Communication Latency=15 cycles).

B. Comparison with other algorithms

The algorithms chosen for comparison with our work were
the Random Search algorithm [6] and the Depth-first-snake
algorithm [7]. In the results we refer to them simply as RS
and Depth, respectively.

58

For all experiments we used our simulator to collect exe-
cution time (in clock cycles), for each benchmark (described
in Section V-A), varying the inter-PE communication latency
(5 and 15 clock cycles), the number of the available PEs in
the system (2, 4, 8, 16, 32, 64 and 128) and the scheduling
algorithm (Depth, RS and SCC-Map). The benchmarks are
categorized according to the used building block and the block
connection types (described in Section V-A).
In Fig. 3 we present the results collect with our simu-

lator, after setting up inter-PE communication latency to 5
clock cycles. Each chart shows the speedups achieved for
one of the benchmarks, using each of the aforementioned
mapping methods, taking as baseline the serial execution (all
instructions in the same PE). In each chart, the y-axis and
x-axis are related, respectively, to the speedups and to the
the number of PEs. Moreover the value labeled as ”Max” is
a theoretical maximum speedup that could be achieved for
that application. This value was obtained by placing each
instruction of the program in a distinct PE and setting the
communication latency to 1 clock cycle, meaning that inter and
intra-PE communication overheads are the same. Naturally, for
these executions the number of PEs in the simulator was set
to the number of instructions. We used this value as an upper-
bound for comparison, since it is the best possible speedup
for each application. Fig. 4 provides the results, when inter-
PE communication latency is set to 15 clock cycles.
It is important to say that the Depth algorithm will always

use the number of available PEs, even if this incurs larger
communication overheads. Obviously, if there are more PEs
than instructions, Depth will map each instruction to a PE,
leaving some PEs idle. On the other hand, RS and SCC-
Map will seek for better mappings, possibly with only a
few PEs, as long as a better overall performance is achieved
(better execution time, lower communication overheads and
reasonable amount of parallelism).
Results show that, for most of the scenarios, SCC-Map

outperforms RS and Depth, even in the absence of cycles. This
is a good indication that our approach to treat cycles is not only
effective, but also generic enough to present good performance
in not so favorable scenarios. Moreover, we observed that RS
and Depth are less effective than SCC-Map when inter-PE
communication latency is higher.

VI. CONCLUSIONS AND FUTURE WORK

We presented SCC-Map, a novel task scheduling algorithm
for dependency graphs with cycles, such as dataflow programs.
In order to validate our algorithm and verify its performance
we built a cycle-accurate dataflow simulator, based on the
TALM model [1], [2]. We designed a set of benchmarks
and compiled them to run on the simulator using 3 different
mapping algorithms: RS [6], Depth [7] and SCC-Map. For
each benchmark we have also varied communication latency
(5 and 15 cycles) and the number of available processing
elements in the system (2, 4, 8, 16, 32, 64 and 128). We
compared the speedups in all scenarios, taking as baseline
the serial execution, where all instructions are mapped to

the same PE. Moreover, for each benchmark, we provided a
theoretical maximum speedup, which is achieved by placing
each instruction of the program in a distinct PE and setting
the communication latency to 1 clock cycle (minimum possible
latency).
Our results show that, for the majority of the evaluated

scenarios, our set of benchmarks presents greater performance
when executed the scheduling provided by SCC-Map, even
when the benchmark has no cycles. This is a good indication
that our approach to treat cycles is not only effective, but
also generic enough accelerate loop-free applications. We have
also observed that SCC-Map is even more effective when the
system has a higher communication latency.
In this first study, for simplicity we have considered that all

instructions take the same time to execute. However, SCC-Map
and our simulator support instructions with different execution
times. Experiments that consider such non-uniform scenarios
are part of our future work. Moreover, since SCC-Map is a
generic placement algorithm for dependency task graphs with
cycles, it could be implemented and evaluated in a series
of systems, besides the Trebuchet, such as heterogeneous
architectures and clusters.

ACKNOWLEDGMENTS
To CAPES and CNPq for the financial support given to the

authors of this work.

REFERENCES
[1] L. A. J. Marzulo, “Explorando Linhas de Execução Paralelas com

Programação Orientada por Fluxo de Dados,” Ph.D. dissertation, Uni-
versidade Federal do Rio de Janeiro, Oct. 2011.

[2] T. A. Alves, L. A. Marzulo, F. M. Franca, and V. S. Costa, “Trebuchet:
exploring TLP with dataflow virtualisation,” International Journal of High
Performance Systems Architecture, vol. 3, no. 2/3, p. 137, 2011.

[3] G. Gupta and G. S. Sohi, “Dataflow execution of sequential imperative
programs on multicore architectures,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
44 ’11. New York, NY, USA: ACM, 2011, pp. 59–70.

[4] P. Zipf, G. Sassatelli, N. Utlu, N. Saint-Jean, P. Benoit, and M. Glesner,
“A Decentralised Task Mapping Approach for Homogeneous Multi-
processor Network-On-Chips,” International Journal of Reconfigurable
Computing, vol. 2009, pp. 1–14, 2009.

[5] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic
Heterogeneous Processor Architectures,” vol. 4, no. 2, pp. 175–187, 1993.

[6] W. F. Boyer and G. S. Hura, “Non-evolutionary algorithm for scheduling
dependent tasks in distributed heterogeneous computing environments,”
Journal of Parallel and Distributed Computing, vol. 65, no. 9, pp. 1035–
1046, Sep. 2005.

[7] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Os-
kin, and S. J. Eggers, “Modeling instruction placement on a spatial
architecture,” in SPAA ’06: Proceedings of the eighteenth annual ACM
symposium on Parallelism in algorithms and architectures. New York,
NY, USA: ACM, 2006, pp. 158–169.

[8] H. Topcuoglu, S. Hariri, and I. C. Society, “Performance-Effective and
Low-Complexity,” Computer, vol. 13, no. 3, pp. 260–274, 2002.

[9] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam,
K. Michelson, M. Oskin, and S. J. Eggers, “The WaveScalar architecture,”
ACM Transactions on Computer Systems, vol. 25, no. 2, pp. 4–es, May
2007.

59

